• Direct measurements of meltwater runoff on the Greenland ice sheet surface 

      Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun Lloyd; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E. (Journal article; Tidsskriftartikkel; Peer reviewed, 2017-12-05)
      Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream ...
    • Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet 

      Cook, Joseph M.; Tedstone, Andrew J.; Williamson, Christopher; McCutcheon, Jenine; Hodson, Andrew J.; Dayal, Archana; Skiles, McKenzie; Hofer, Stefan; Bryant, Robert; McAree, Owen; McGonigle, Andrew; Ryan, Jonathan; Anesio, Alexandre M.; Irvine-Fynn, Tristram D.L.; Hubbard, Alun Lloyd; Hanna, Edward; Flanner, Mark; Mayanna, Sathish; Benning, Liane G.; van As, Dirk; Yallop, Marian; McQuaid, James B.; Gribbin, Thomas; Tranter, Martyn (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-01-29)
      Melting of the Greenland Ice Sheet (GrIS) is the largest single contributor to eustatic sea level and is amplified by the growth of pigmented algae on the ice surface, which increases solar radiation absorption. This biological albedo-reducing effect and its impact upon sea level rise has not previously been quantified. Here, we combine field spectroscopy with a radiative-transfer model, supervised ...
    • Methods for Predicting the Likelihood of Safe Fieldwork Conditions in Harsh Environments 

      Leidman, Sasha Z.; Rennermalm, Åsa K.; Broccoli, Anthony J.; van As, Dirk; van den Broeke, Michiel R.; Steffen, Konrad; Hubbard, Alun Lloyd (Journal article; Tidsskriftartikkel; Peer reviewed, 2020-07-30)
      Every year, numerous field teams travel to remote field locations on the Greenland ice sheet to carry out polar research, geologic exploration, and other commercial, military, strategic, and recreational activities. In this region, extreme weather can lead to decreased productivity, equipment failure, increased stress, unexpected logistical challenges, and, in the worst cases, a risk of physical ...